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It has been shown that the filtration combustion front of gases is resistant to small perturbations at any
asymmetry between the diffusion and thermal transport. A qualitative analysis of the perturbation development
with time confirming that the diffusion-thermal asymmetry does not influence the front stability has been car-
ried out.

The combustion of gases in a porous medium or the filtration combustion of gases (FCG) that occurs widely
in nature finds application in cleaning air, free-flowing materials, and sorbents from organic pollutants [1], in thermo-
chemical conversion of hydrocarbons [2, 3], in recovery of low-calorie gaseous fuels [4, 5], etc.

In designing and using devices for filtration combustion, the question of FCG stability is important. Practice
shows that in low-calorie mixture reactors a deformation of the front may arise and its integrity may be disturbed [6],
and also the geometry of filtration combustion fronts moving concurrently with the flow is easily changed [7, 8]. The
authors of the above-cited works have established that the main mechanism controlling the dynamics of perturbations
is hydrodynamic — concurrent proceeding and competition of the processes of redistribution of filtration flows enhanc-
ing the thermal inhomogeneities of the combustion front and conductive relaxation of the front inhomogeneities. Ex-
periments show that in a methane–air mixture long-wave perturbations, in particular, front-tilt perturbations, have the
highest growth rate.

Under combustion of impoverished hydrogen–air mixtures a specific kind of FC front perturbations takes
place — the so-called site instability that shows up as a fragmentation of the front and the formation of individual
spherical combustion sites. For instance, in [9] the formation of multiple sites under filtration combustion of a hydro-
gen–air mixture at a hydrogen concentration of 4–7% is described. In [10], the formation of sites in a poor hydrogen–
air mixture with very low temperatures (D900 K) was noted. The mechanism of the formation of such structures has
not yet been explained, while the most probable mechanism under growth and stabilization of short-wave (site) pertur-
bations acting when the number Le = D/κ considerably exceeds unity is accepted to be the diffusion-thermal mecha-
nism [9]. (This type of instability for normal laminar flames has been analyzed by the method of small perturbations
by B. Ya. Zeldovich and other scientists [11–13].)

In the present paper, the influence of the diffusion-thermal transfer asymmetry on the FCG front stability has
been investigated and it has been shown that this asymmetry does not play the decisive role in the formation of per-
turbations.

The mathematical problem on filtration combustion is formulated as a system of heat and mass balance equa-
tions for the solid and gas phases jointly with filtration and state equations for gas [14]. In the one-temperature ap-
proximation (the interphase heat-transfer coefficient αV → ∞) under the condition ug >> uw, ρs >> ρg the system of
FCG equations can be written in the following form:
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, the y- and x-axes are directed along the front and perpendicular to it; to the

positive and negative values of x corresponds the position after and before the front.
Compared to the system of equations for the gas-phase flame [12], system (1)–(2) contains the specific coef-

ficients u~ and κ~ and the dispersion gas diffusion and heat-conductivity coefficients. For the characteristic values of pa-
rameters (u

_
w = 0.5, ug = 0.5 m/sec, uth = 10−3 m/sec, λs = 1 W/(m⋅K), D

~
g = 5⋅10−4 m2/sec, λ

~
g = 0.5 W/(m⋅K) the

values of the coefficients are: u~ C 5⋅10−4 m/sec, κ~ C 1.5⋅10−6 m2/sec, and the concentration and thermal thicknesses of
the stationary wave front δD C 10−3 m and δλ C 3⋅10−3 m.

Using the method of small perturbations analogously to [12], let us show that, on the assumption of a high
activation energy of the chemical reaction, the combustion front is stable whatever the Lewis number.

Consider the chemical reaction zone as a weak discontinuity surface on which the concentrations and tempera-
tures of components are continuous and the flows have a discontinuity. The matching conditions as to the concentra-
tion, temperature, and flow of matter are of the form
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Since the component is expended completely (a(x > xf) B 0), the latter condition will be written as m = −ρgD
~∂a
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.

The dependence of the amount of matter burnt up per unit time on the front temperature Tf is as follows (this follows

from the consideration of the structure of the chemical reaction zone):
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Another boundary condition is the energy conservation law
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as in [12]. However, such a form of writing subsequently leads to awkward expressions. Therefore, as an additional

condition, we used the energy-conservation equation for the quasi-stationary FCG wave in the form 
∆Tad

∆Tmax
 = 1 − u

_
w,

where ∆Tmax = Tf − T0.

Let us write the unperturbed equation as
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Here and hereinafter, subscripts 1 and 2 pertain to the region before and after the front, respectively.
The perturbed distributions for the temperatures and concentrations (except for the concentration after the

wave front) are made up of unperturbed solutions and perturbations:
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Here the signs before positive coefficients bj were chosen so that at a distance from the flame front perturbations at-
tenuate.

Substituting the perturbed solutions for T1, T2, and a1 into the heat-conduction and diffusion equations, we
obtain the following equations for coefficients bj:

ω = − u~b1 + κ~ (b1
2
 − k

2) ,   ω = u~b2 + κ~ (b2
2
 − k

2) ,   ω = − ugb3 + D~ (b3
2
 − k

2) .

Hence

b1,2 = % 
u~

2κ~
 + √u~

2

4κ~2 + k
2
 + 

ω

κ~
 ,   b3 = 

ug

2D
~  + √ug

2

4D
~2

 + k
2
 + 
ω

D
~  .

The perturbed front profile is regarded as a y-periodic and time exponential perturbation: xf = ε exp
(ωt + iky). Then the matching conditions as to the concentration and temperature upon linearization take the form
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The matching condition as to the flow of matter will be written as
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where z = 
E
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 (0))2

(Tf
 (0) − T0).

Linearization of the condition 
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w) leads to the equation
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As a result, we obtain a homogeneous system of four linear equations for the perturbation amplitude ε, f, g, h:

ug

D
~  ε − f = 0 ,   

u~

κ~
 ε + g − h = 0 ,   

ug

D
~  ε − b3 

D
~

ug

 f − zh = 0 ,   h − 
ω

uth (1 − u
_

w)
 ε = 0 .

Equating the system determinant to zero and substituting into it the expression for b3, we arrive at the follow-
ing equation for ω:
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Evidently, it has no real positive solutions. Consequently, the FCG front is resistant to small perturbations at any
asymmetry between the diffusion and thermal transports.

Let us perform an additional qualitative analysis of the diffusion-thermal mechanism of instability of the FCG
front without considerable simplifications in the problem formulation.

Let the combustion front be subjected to an insignificant sinusoidal perturbation (Fig. 1). We assume that the
filtration field before the front is unperturbed (thermohydrodynamic mechanisms are off). The heat balance of the po-
rous skeleton in the heating region of the considered part of the front determines the velocity of travel of this part. It
is formed due to the convective heat transfer to the cold mixture and the conductive heat flux from the heat-release
front to the heating region. Let us see how the asymmetry of the diffusion-thermal transport influences this balance.

Since the analog of the Lewis number for the system of FCG equations (1)–(2) is a complex expression,
below we shall use the concepts of symmetry (δD = δλ) and asymmetry (δD ≠ δλ) of the diffusion-thermal transport.
At δD = δλ the temperature and concentration profiles are similar and perturbations dissipate due to the heat conduc-
tion. In the case where δD ≠ δλ, the mechanism of enthalpy redistribution in the combustion front appears. Let us es-
timate the corresponding effect. Let the convex part of the front be of diameter dcon (Fig. 1). Through the lateral
surface of the preheating region (OA in Fig. 1), diffusion of the missing component providing enthalpy inflow and
conductive heat outflow occur. The above flows can be estimated as

Fig. 1. Scheme of the perturbed portion of the FCG (semibold line denotes the
combustion front); a) perturbed part of the FCG front; b) heat transfer through
the lateral surface of the part; c) three-dimensional form of perturbation.
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∇Ma and ∇MT are, respectively, the concentration and temperature gradients in the direction perpendicular to OA.
Since ∇Ma C (a0

 ⁄ δD) sin β, ∇MT C (∆Tmax
 ⁄ δλ) sin β, SD C πdconδD/cos β, and Sλ C πdconδλ/cos β, we have
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The explicit dependence on the front thickness in (4) is absent, and the total balance determined by the trans-
fer parameters is proportional to the perturbed region diameter and the quantity tan β: ∆H = H+ − H− = πdcon
(hiρgD
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ga0 − λ∆Tmax) tan β. Then the heat excess per unit area of the convex part is
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Taking as a model of the perturbed part the geometry of a sphere segment with a radius of curvature rc, we get
dcon = 2rc sin β and
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Thus, ∆Hsp increases with increasing angle β, and in so doing ∆Hsp → ∞ at β → π/2. Differentiating (6) with respect
to rcon = rc sin β, we obtain the differential excess of heat (source term) in the perturbation cross section, which also
turns out to be a monotonically increasing function of β:
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Obviously, heat disbalance takes place at (hiρgD
~

ga0 − λ∆Tmax) ≠ 0 or Φ = 
hiρgD

~
ga0

λ∆Tmax
 ≠ 1. (Note that the approximation

SD C πdconδD/cos β can be replaced by the less crude approximation SD C πdcon√rc
2 c o s2 β + 2rcδD + δD

2  − rc cos β,
giving a slower and finite growth of SD with β. In so doing, however, the character of relation (7) and the conclusion

on resistance of the flat front to curvatures are preserved.)

At Φ = 
hiρgD

~
ga0

λ∆Tmax
 > 1, the curvature of the perturbed part decreases and the front goes to a neutral (stable)

state slightly differing from the unperturbed one (Fig. 2a). In the case where Φ = 
hiρgD

~
ga0

λ∆Tmax
 < 1, as the radius in-

creases, there is an increase in the heat deficiency, and, therefore, the perturbation amplitude of the convex part of the
front increases. In so doing, however, the perturbed part as a whole moves into the depth relative to the middle posi-

Fig. 2. Character of the evolution of small perturbations (thin solid line) at
various Lewis numbers: a) transition of the front to the neutral state at Φ > 1;
b) wave-frequency multiplication with decreasing amplitude Φ < 1.
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tion of the front (Fig. 2b), wave-frequency multiplication occurs, and there is a general decrease in the amplitude.
From the performed analysis of the perturbation evolution the resistance of the front to small perturbations follows.

Note that the criteria characterizing the diffusion-thermal asymmetry for the FCG problem are not connected
with the Lewis number constructed by the molecular or dispersion coefficients of transfer in the gas phase. Thus, for
poor hydrogen flames Le D 3, and in the case of dispersion transfer coefficients Led D 1.3. Under FCG of poor hy-

drogen–air mixtures, Φ = 
hiρgD

~
ga0

λ∆Tmax
 D 1.

According to the analysis performed, the diffusion-thermal asymmetry is not an important mechanism of FCG
front perturbation. The main mechanism of the appearance of site instability is the thermohydrodynamic one.

The results obtained have been tested by numerical calculations by the following method. We simulated the
evolution of the sinusoidal perturbation amplitude of the FCG wave of a poor (equivalent ratio ϕ = 0.55) methane–air
mixture (Fig. 3). The diameter of the system (and of the calculated domain) is 6 cm, the length is 20 cm, and the
diameter of packing particles dp = 5 mm. The initial perturbation amplitude expressed in terms of fractions of the di-
ameter of the perturbed part ε ⁄ dcon = 0.1. For the calculations we used a detailed two-temperature model. The model,
the mathematical formulation, and the solution algorithm are described in [14, 15]. To exclude hydrodynamic factors,
the filtration field was a quasi-one-dimensional (the transverse gas flow was excluded).

The time evolution curves of the dimensionless perturbation amplitude are given in Fig. 4. The calculations
show that, in the absence of the hydrodynamic redistribution of filtration, the small perturbations decrease by a law
close to exponential. In so doing, the first stage of perturbation relaxation (t < 70 sec) corresponds to the perturbation
relaxation in the near-axis region and the further evolution — to the perturbation relaxation of the scale of the diame-
ter of the whole system. A change in the diffusion coefficient from 0.1Dair to 3Dair (at a constant heat conductivity of
the gas) practically does not influence the relaxation dynamics of the initial perturbation. As the diffusion coefficient
increases to 10Dair, the perturbation relaxation rate decreases. This is due to the fact that in the gas phase perturbations
arise, whose nature apparently corresponds to the classical diffusion-thermal instability of the gas-phase flame. It
should be noted that because of the heat exchange with the porous skeleton the amplitude of perturbations in the gas
phase stabilizes at a rather low level and does not lead to perturbations in the gas–porous medium system. Note that
a tenfold excess of the diffusion coefficient over the diffusion coefficient of methane in air does not occur in the prac-
tically realized reaction systems.

Thus, in the present paper, a complex analysis of the influence of thermodiffusion asymmetry in the gas phase
on the FCG front stability has been carried out. It has been shown that the diffusion-thermal disbalance does not lead
to a growth of perturbations but in some cases can produce an effect on the quantitative characteristics of the growth
or relaxation of perturbations. In so doing, the thermohydrodynamic mechanism is probably dominant in the case of

Fig. 3. Temperature field isoline of initial perturbations of the FCG front: 1) T
= 400; 2) 500; 3) 600; 4) 700; 5) 800; 6) 900; 7) 1000; 8) 1100 K. x, y, m.
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growth of perturbations of filtration combustion waves in the regime of low velocities (strong thermal coupling with
the skeleton).

In the one-temperature approximation of the problem of filtration combustion of gases and in the absence of
hydrodynamic factors, the absolute resistance of the front to small perturbations independent of the gas Lewis number
has been shown.

Qualitative consideration has been given to the processes associated with the asymmetry of the diffusion and
thermal transport in the filtration combustion front. In general, the investigation corroborates the conclusion that the
FCG front is stable under these conditions.

The numerical calculations of the perturbation evolution performed with a wide (two orders of magnitude)
variation of the gas Lewis number show that at the characteristic parameters of the system of filtration combustion in
the practically realized mixtures the diffusion-thermal asymmetry cannot lead to the appearance or growth of small per-
turbations of the front. In so doing, the calculations demonstrate the possibility of the appearance of perturbations in
the gas phase and their complex interaction with the temperature front in a porous medium. A detailed study of these
interactions at various system parameters (particle size, composition of the combustible mixture, size of perturbations)
can be the subject of further investigations.

The present investigation shows that the key to understanding the phenomenon of site instability under filtra-
tion combustion of poor hydrogen–air mixtures should be sought in the thermohydrodynamic factors.

This work was supported by the State program of oriented fundamental investigations "Vodorod," section 11.

NOTATION

a, mass fraction of the limiting component; A, perturbation amplitude, m; b1, b2, b3, coefficients, 1/m; c, spe-
cific heat capacity, J/(kg⋅K); D, diffusion coefficient, m2/sec; Dair, diffusion coefficient of methane in air, m2/sec; d,
diameter, m; E, activation energy, J/mole; f, g, h, coefficients of the perturbation method; hi, specific enthalpy of the
limiting component, J/kg; H+, rate of enthalpy increase due to diffusion, W; H−, rate of heat outflow due to heat con-
duction, W; ∆H, total rate of enthalpy increase, W; k, perturbation wave number, 1/m; Le, Lewis number; m, flow rate
of the limiting component in the combustion zone per unit area of the front, kg/(m2⋅sec); n, normal; Q, thermal effect
of reaction per unit mass of the limiting component, J/kg; R, universal gas constant, J/(mole⋅K); r, radius, m; SD and
Sλ, surface areas of mass and heat transfer, m2; T, temperature, K; ∆Tmax, difference between the temperature of the
front and the temperature far before it, K; ∆Tad, same for the adiabatic flame, K; t, time, sec; u, velocity, m/sec; u

_
w,

dimensionless combustion wave velocity; x and y, coordinates across and along the front, m; αV, volume coefficient of

Fig. 4. Time dependence of the dimensionless perturbation amplitude A ⁄ dk of
the plane FCG wave in the absence of transverse filtration for various diffu-
sion coefficients of the gas components: 1) D = 0.1Dair; 2) Dair; 3) 3Dair; 4)
10Dair. t, sec.
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interphase heat transfer, W/(m3⋅K); β, angle, rad; δD and δλ, concentration and thermal thicknesses of the front, m; ε,
initial perturbation amplitude, m; κ, thermal diffusivity, W/(m⋅K); ρ, density, kg/m3; Φ, stoichiometric ratio; ω, pertur-
bation increment, 1/sec. Subscripts: 0, for a long distance before the front; (0), unperturbed solution; c, front curvature;
d, dispersion; f, front; g, gas phase; con, convex part of the front; p, particle; s, solid phase; sp, specific value; th,
thermal wave; w, wave; D, effective value; ′, perturbation; air, air; ad, adiabatic, max, maximum.

REFERENCES

1. S. I. Fut’ko, K. V. Dobrego, E. S. Shmelev, A. V. Suvorov, and S. A. Zhdanok, Filtration combustion upon
hydrocarbon desorption from a porous medium, Inzh.-Fiz. Zh., 76, No. 6, 88–96 (2003).

2. I. F. Buyakov, S. I. Shabunya, and A. V. Krauklis, Development of Design Plans and Specifications, Manufac-
ture and Assembly of the Prototype of a Generator of Partial Oxidation of Methane, Study and Optimization of
Its Thermal Conditions, Testing [in Russian], Rep. on R&D Works under the Agreement HJMTI 10-01/ST1783.
No. 95 as of November 24, 2001, A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sci-
ences of Belarus, Minsk (2003).

3. V. S. Arutyunov and O. V. Krylov, Oxidation Transformations of Methane [in Russian], Nauka, Moscow
(1998).

4. W. D. Binder and R. J. Martin, The destruction of air toxic emissions by flameless thermal oxidation, in: Proc.
12th Int. Incineration Conf., Knoxville, Tennessee, 3–7 May, 1993, Tennessee University (1993).

5. S. P. Bugaev, V. A. Kuvshinov, N. S. Sochugov, and P. A. Khryapov, Cleaning of air from organic impurities
in a plasma-chemical barrier-discharge reactor, Zh. Prikl. Khim., 69, Issue 6, 965–969 (1996).

6. G. A. Fateev, O. S. Rabinovich, and M. A. Silenkov, Oscillatory combustion of a gas mixture blown through
a porous medium or a narrow tube, in: Proc. 27th Symp. (Int.) on Combustion, The Combustion Institute, Pitts-
burgh (1998), pp. 3147–3153.

7. S. S. Minaev, S. I. Potytnyakov, and V. S. Babkin, On the instability of the flame front under filtration com-
bustion of gases, Fiz. Goreniya Vzryva, No. 1, 49–54 (1994).

8. K. V. Dobrego, I. M. Kozlov, V. I. Bubnovich, and C. E. Rosas, Dynamics of filtration combustion front per-
turbation in the tubular porous media burner, Int. J. Heat Mass Transfer, 46, 3279–3289 (2003).

9. L. A. Kennedy, A. A. Fridman, and A. V. Saveliev, Superadiabatic combustion in porous media: wave propa-
gation, instabilities, new type of chemical reactor, Int. J. Fluid Mech. Res., 22, No. 2, 1–26 (1996).

10. Study of Radiation Energy Transfer and the Physicochemical Kinetics in the Processes of Combustion of Hy-
drogen and Hydrogen-Containing Fuels under the Conditions of Filtration, Rep. on R&D Works, A. V. Luikov
Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, Minsk (2004).

11. G. I. Barenblatt, Ya. B. Zel’dovich, and A. G. Istratov, On the diffusion-thermal stability of a laminar flame,
Zh. Prikl. Mekh. Tekh. Fiz., No. 4, 21–26 (1962).

12. Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, Mathematical Theory of Com-
bustion and Explosion [in Russian], Nauka, Moscow (1980).

13. G. I. Barenblatt and Ya. B. Zel’dovich, On the stability of flame propagation, Prikl. Mat. Mekh., No. 2, 856–
859 (1957).

14. K. V. Dobrego and S. A. Zhdanok, Physics of Filtration Combustion and Gases [in Russian], A. V. Luikov
Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, Minsk (2002).

15. K. V. Dobrego, I. M. Kozlov, N. N. Gnezdilov, and V. V. Vasil’ev, 2D BURNER-Package of programs for
Modeling the Devices of Filtration Combustion in Gas-Phase Nonstationary Flames [in Russian], Preprint No.
1 of the V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, Minsk (2004).

260


